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Solar phase curves for Rhea are presented using new telescopic
opposition data along with Voyager imaging observations. Two
viable solutions were found to Hapke's model (1986, Icarus 67,
264-280) which was used to describe this phase curve. The porosity
derived from the model's opposition parameters show that the
optically active portion of Rhea's regolith has a porosity between
80 and 95%, which is slightly lower than the porosity seen on
Europa and higher than the porosity measured for the Moon using
similar methods. The macroscopic roughness is comparable to that

measured by Verbiscer and Veverka (1989, Icarus 82, 336-353)
for Rhea. The single-particle scattering functions found in this

study are predominantly forward scattering, which contradicts the
results of Verbiscer and Veverka (1989). ¢ 1995Aendemi¢Press,Inc.

I. INTRODUCTION

Modeling of global surface brightness variations with

viewing geometry has been applied to many of the icy
satellites of the outer Solar System (Buratti 1984, 1985,

Buratti and Veverka 1983, 1984, Buratti et al. 1988, 1990,

Domingue et al. 1991, Helfenstein 1986, Helfenstein et

al. 1988, Verbiscer and Veverka 1989, Veverka et al.

1987). As observations of planetary phase curves improve

(by either increasing large phase angle coverage or more
detailed measures of the opposition surge) or photometric

models improve, the understanding of planetary surfaces
increases. This paper first reviews, in small part, what is

currently understood about the surfaces of Europa and
Rhea through previous photometric analyses. New oppo-

sition data for Rhea are then presented. Finally the photo-

metric behavior of Rhea is compared and contrasted with

that of Europa. Although the surface morphologies and

geological histories of Rhea and Europa are extremely
different, we find that both objects have high-albedo icy
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surfaces exhibiting distinct, very narrow (less than one

degree) opposition effects, and similar topographic tex-
tures. To account for these photometric similarities, we

speculate about how the optical properties of surface wa-
ter ice and frost may be affected by different icy satellite

geological environments.

II. BACKGROUND

Photometric Model

Hapke's model (1986) has been used to describe the

solar phase curves of many solar system objects. The
parameters of this model include w, the single scattering

albedo, and the opposition effect parameters B o (ampli-

tude) and h (width). B o, the opposition spike amplitude,

is related to the percentage of light scattered from the

surface of a particle. For B o = l all the light is scattered

from the surface (Hapke 1986). Parameter h is a measure

of the width of the opposition spike and is related to the

particle size distribution and porosity within the regolith.

In this analysis, we assume that the opposition effect is
due to shadow-hiding rather than coherent backscatter

(MacKintosh and John 1988, Hapke 1990). Using a simple

method for comparing these sources of the opposition

effect, Domingue (1992) showed that porosities derived

from h (assuming the same particle size distribution) are

similar regardless of the exact mechanism. The single-

particle scattering function used was a double-lobed Hen-

yey-Greenstein function with parameters b and c. The

parameter b describes the angular width of the forward-
and backscattering lobes, assumed to be equal to keep

the total number of parameters in the model small. The

parameter c describes the relative amplitudes of the lobes.
This single-particle scattering function was chosen be-
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FIG. 1. Comparisons of the Rhea correction factors curves to 90 ° rotational phase angle from Noland eta/. (1974) (open circles) and Lockwood

and Thompson (open diamonds) for y filter (0.55/zm) observations.
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FIG. 2. Comparisons of the Rhea correction factors curves to 90 ° rotational phase angle from Noland et .I. (1974) (open circles) and Lockwood

and Thompson (open diamonds) for b filter (0.47/_m) observations.



230 DOMINGUE, LOCKWOOD, AND THOMPSON

4.8

4.11

"_ 5.0
"10

r--

¢_5.1
O

E
v

o_ 5.2

4)
r-

'- 5.3
Ot

"r-
.4:1

5.4

5.5

:::::::::::::::::::::::

0 y filter (Noland et al. 1974)

0 y filter (Lockwood et al. 1980, and

Lockwood & Thompson)

O0 0 0

0 0 0°°8, 8o0o° 0o ° o o

O

O

5.6 :::::::::::::::::::::::::::::
0 1 2 3 4 5 6

solar phase angle (degrees)
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cause it is compatible with the single-particle scattering

function used by McGuire and Hapke (1994) in their labo-

ratory study; which will allow us to compare our results

with their findings. The final Hapke parameter is 0, a

measure of the average surface slope. This average is

taken over a size range from a few particle diameters to

the resolution limit of the Voyager images (Hapke 1984).

This type of average is dominated by smaller size scales,

so that 0 is predominantly a measure of the average sur-

face tilt on millimeter to centimeter scales (Hapke 1984,
Helfenstein 1988). The mathematical formulization of the

model is given in Hapke (1986).

Europa Photometry

Early work by Buratti and Veverka (1983) examined

the phase curve of Europa using Voyager images which

covered the spectral range from 0.34 to 0.58 _m, and

extended in phase angle coverage from 3 ° to 143° . They

used an empirical lunar-Lambert phase function to de-

scribe these phase curves. Later Buratti (1985) reexam-

ined Europa's phase curve using a radiative transfer

model based on the early work of Hapke (1981, 1984) and

Goguen (1981). From this study Buratti found that Europa
had a more compact regolith (-65% porosity) and a more

forward-scattering single-particle scattering function than
the satellites Mimas, Enceladus, Rhea, and the Moon.

However, this study did not include data within the oppo-

sition surge detected at less than 1° phase angle (Domingue

et al. 1991). Photometric analysis of IUE data by Bur_tti

et al. (1988) suggested porosities of 25 and 75% for lhe
leading and trailing hemispheres, respectively. Buratti et

al. (1988) detected no opposition surge with IUE on the

leading hemisphere, but they did detect a portion of the

opposition surge on the trailing hemisphere. Domin_ue

et al. (1991) combined the telescopic data of Lockwood

and Thompson (private communication), which describes

the opposition spike in detail, with the Voyager imaging

data at 0.47 and 0.55 _m. They found that both hemi-

spheres of Europa are highly porous (---90%) and that the

single-particle scattering function has both a forward- and

backscattering component, even though the backscattzr-
ing component dominates.

Rhea Photometry

Using Voyager clear filter images, which covered ph_:se

angles 2° to 68 °, Buratti and Veverka (1984) found ph_.se
coefficients for the satellites Rhea, Dione, Tethys, Encela-

dus, and Mimas that are statistically indistinguishable

from previous Earth-based determinations. In their p-e-

liminary analyses of the Rhea Voyager data they did riot

find any clear evidence of an opposition surge (Buratti and

Veverka 1984). Later Buratti (1985) applied a radiative

transfer model based on the work of Hapke (1981, 191q4)

and Goguen (1981) to similar Voyager imaging observa-

tions of Europa, Mimas, Enceladus, and Rhea. Burr tti

(1985) stated that the major result of this study was that the



RHEA AND EUROPA 231

%-
'10

t,'-

O

E
v

(B
1-

c--

lTt
°--
k.

rt

0 b filter (Nolond et al. 1974-)

0 b filter (Lockwood et ol. 1980, and

Lockwood & Thompson)

0

0

1 2 3 4 5 8 7

solar phase angle (degrees)

FIG. 4. Rhea solar phase curve. Comparisons of the Noland eta/. (1974) observations (open circles) with the Lockwood et al. (1980) and

Lockwood and Thompson (unpublished) observations (open diamonds) for the b filter (0.47/zm).

optically active portions of the upper regoliths of Mimas,
Enceladus, and Rhea appeared to be structurally similar

to the Moon's regolith. Verbiscer and Veverka (1989)

expanded Buratti's (1985) work on Rhea by using an up-

dated version of Hapke's model (Hapke 1986) and increas-

ing the phase angle coverage by including images taken
at 135 ° solar phase. Verbiscer and Veverka (1989) agreed

with Buratti's (1985) basic conclusion that the microstruc-

ture of Rhea's regolith is similar to that of the Moon.

They also found that the global large scale roughness

derived from Hapke's model is similar between Rhea and
the Moon. When Verbiscer and Veverka (1989) divided

their data set into leading and trailing hemisphere groups,

they found that the darker, trailing hemisphere was

rougher than the brighter, leading hemisphere. The work

done to date on Rhea has not included precise observa-

tions of the opposition surge. Verbiscer and Veverka

(1989) did compare their Voyager phase curves with the
Earth-based data of Noland et al. (1974) and found that the

two phase curves were consistent within the overlapping

TABLE I

Corrections to Absolute Magnitudes for the Voyager Filters at Europa and Rhea

Filter Hemisphere Correction

Europa
Clear,blue Leading -0.259

Trailing -0.317

Green,orange Leading -0.124

Trailing -0.140

Rhea

Clear,blue Leading -0.200

Trailing -0.200

Green,orange Leading -0.077

Trailing -0.077

Note. The correction values for Europa are taken from

et al. (1991). The corrections are (blue + correction)

and (orange + correction) = green.

Domingue

= clear
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TABLE II
Photometric Parameters

obj ect w Bo h b c 5 Ap RES

Rhea (L)
solution 1:
0.47_m 0.980 0.52 0.0071 -0.569 0.664 15 0.87 0.069

0.55_m 0.986 0.46 0.0071 -0.575 0.669 15 0.88 0.028

solution 2:

0.47_m 0.970 0.45 0.0122 -0.544 0.595 14 0.84 0.068

0.55_m 0.977 0.43 0.0122 -0.547 0.596 14 0.86 0.029

Rhea(T)
solution 1:

0.47_m 0.927 0.50 0.0074 -0.567 0.665 16 0.72 0.097

0.55_m 0.951 0.44 0.0074 -0.567 0.677 16 0.73 0.048

solution 2:

0.47_m 0.884 0.43 0.0122 -0.544 0.563 13 0.70 0.097

0.55_m 0.927 0.42 0.0122 -0.545 0.607 13 0.72 0.048

Ap is the physical albedo calculated from Hapke's model. Errors:

w = ±0.01,B o = ± 0.03, h = ±0.005, b = c = ± 0.01, O = ± 3° .

region. However, the scatter in Noland et al.'s (1974)

data does not clearly distinguish an opposition surge and
Verbiscer and Veverka (1989) found that the scatter was

too large to provide a useful independent fit of Hapke's
model.

This study expands on the previous work reviewed

here by combining Voyager imaging observations (which

provide the large phase angle coverage) with the Earth-
based observations of Lockwood et al. (1980) and Lock-

wood and Thompson (unpublished), which more accu-

rately describe Rhea's phase curve at phase angles less

than 6°, and especially within the opposition surge. Mod-

eling the resulting phase curve using Hapke's model pro-

vides a new description of the microtexture of Rhea's

regolith.

III. DATA AND ANALYTICAL METHODS

The data used in this project include telescopic observa-

tions of Rhea and disk-integrated measurements from

Voyager I and II spacecraft images.

Earth-Based Observations

The new Rhea telescopic data presented here cover the

leading hemisphere and were obtained between 1976 and

1986 (Lockwood et al. 1980, and unpublished) and are

listed in Table AI of the Appendix. The table gives the

universal time (UT), Julian date (JD), solar phase angle

(a), rotational phase angle (O), and the magnitudes Mo.47

and Mo.55, taken at 0.47 and 0.55/xm, respectively. The

magnitudes M047 and Mo. 5_ in Table AI have been cor-

rected for rotational variation to 0 = 90 ° (leading herai-

sphere) and 0 = 270 ° (trailing hemisphere) using the cor-

rection curves in Figs. I and 2, normalized to a La-n-
bertian disk of the same size at the same distance by

the relationship

M = Mpla,et = Msun -51og ( S_) , (1)

where s = Earth-Rhea distance = 8.539 AU, d =

Sun-Rhea distance = 9.539 AU (Burns 1986), A =

Sun-Earth distance, R = Rhea's radius -- 764 km =

5.107 × 10 6 AU (Burns 1986), Mplanet is the measured
magnitude of Rhea, and Ms, n is the magnitude of the Sun,

-26.74 at 0.55/xm and -26.33 at 0.472 _m, (Allen 1973).

These observations correspond closely with those made

previously by Noland et al. (1974), as seen in Figs. 3
and 4.

In order to show that the leading hemisphere opposition

parameters derived here are consistent with those for the
trailing hemisphere, we also modeled the trailing hemi-

sphere using the Voyager data coupled with Noland et

al.'s (1974) Earth-based data. However, interpretations

of the resulting opposition model parameters for the trail-

ing hemisphere are not unique due to the scatter in 1he

trailing hemisphere telescopic data set and should be con-
sidered with caution.

Voyager Imaging Observations

The Voyager images of Rhea taken from the Planetary
Data System's CD disks (United States Geological Sar-
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parameter values, and the dash-dot line is the theoretical model using solution 2 parameters,

vey) are listed in Tables AII and AIII of the Appendix.
These tables list the Flight Data System (FDS) count,
the filter, the solar phase angle (a), the subspacecraft

longitude (0), the disk-integrated brightness, and the cor-
rected disk-integrated magnitude.

The Rhea images were calibrated using the Planetary
Imaging and Cartography System (PICS), a calibration
software package developed by the United States Geolog-
ical Survey (USGS). Disk-integrated brightness values
were obtained by averaging the brightness values of the
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pixels within the disk of the satellite. The uncertainty in
locating the disk of the satellite in the image frame and
vidicon bleeding effects result in a 1-2% uncertainty in
the integral data due to this data collection technique.
The overall error bars in the Voyager disk-integrated data
set run between 10 and 15%.

The disk-integrated brightness (I/F) values were fi-st
converted to magnitudes (M) using the relationship
I/F -- 10 -0"aM. We then corrected the magnitude values
using the method of Domingue et al. (1991). The correc-
tions, in sequence, were as follows:

(1) Using the curve in Fig. 3 for the green and orange
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extrapolated from Verbiscer and Veverka (1989). The solid line is the theoretical model using solution 1 parameter values, and the dash-dot line

is the theoretical model using solution 2 parameters.

filter data, and the curve from Fig. 4 for the clear and
blue filter data, we adjusted the magnitudes of all the
images used to 270° rotational phase angle.

(2) The blue and orange filters have effective wave-
lengths within -+0.03 _m of the clear (0.47 _m) and green

(0.55 p_m) filters, respectively. By comparing magnitudes
at similar solar phase angles, relative corrections were
found to match the blue filter data to the clear filter data,

and the orange filter data to the green filter data. The
data from these filters were combined in order to increase
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phase angle coverage and number of observations at these
two wavelengths which correspond to those of the
telescopic data.

(3) We found that the narrow and wide angle camera
images gave the same magnitudes at similar phase angles;

thus no adjustment had to be made for differences be-
tween Voyager cameras.

(4) Likewise, Voyager I and II images gave similar
results at similar phase angles; thus no relative adjust-
ments were required for images from the two spacecr_ ft.
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TABLE III

Particle Size Distribution Function Y

Particle

distribution

n(r) a Function Y

Kr -B : B = 0 4/3"/3"

1 3/¢81n (rl/r.)

2 2¢_/r,

3 V_ [in (r]/r.] 3/2 (rJr,)

4 w_/in (rl/r.)

5 :l./,,/_

"n(r)dr = Kr-Bdr for a power law particle size distribution
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(5) By comparing magnitudes at overlapping solar
phase angles, a discrepancy was found between the tele-
scopic and Voyager data sets. A correction was applied
to the Voyager data to place it in agreement with the
telescopic data.

(6) Finally, the leading hemisphere data were corrected
to 90° rotational phase angle and separated from the trail-
ing hemisphere data so that each hemisphere could be
examined individually. Except for the images at 135° solar
phase angle, the magnitudes listed for those images with
O between 0° and 180° have been corrected to a rotational

phase angle of 90°, and those images with 0 between 270 °
and 360 ° have been corrected to a rotational phase angle
of 270 °. Since the illuminated portion of the disk of the
a = 135° images are of the leading hemisphere (Verbiscer
and Veverka 1989), these images were corrected to both
rotational phase angles and used in the solar phase curves
of both hemispheres. This division of images into leading
and trailing hemisphere does not fully separate out the
two hemispheres. Due to the viewing geometries, some
of the images with subspacecraft positions near 0° and 360°
longitude have portions of both hemispheres illuminated.
However, with the corrections for rotational phase used
here the divisions are valid to first order.

The corrections applied to the Voyager data, excluding
those for rotation and wavelength, are listed in Table I.
The resulting magnitudes define the phase curves used in

the analysis. For the clear filter images at a = 135°, Verbis-
cer and Veverka (1989) corrected for rotational variations
using their global albedo map. We included the result: ng
magnitude they found at a = 135° in our phase curves
for comparison and completeness (differences in normal-
ization were accounted for by setting the magnitudes of
the phase curves equal at 68°).

IV. RESULTS

Photometric Model

The phase curves generated from the data discussed

above were examined using Hapke's model (Hapke 1981,
1984, 1986). The single-particle scattering function used
was a double-lobed Henyey-Greenstein function given
by

(I - c) (I - b 2) c(1 - b2)
P(a) (1 +2bcosa+b2) 3/2+(l-2bcosct+b2) 3f2'

_2)

The parameter values for Rhea given in Table II were
found using a modified least-squares grid search method
(Domingue et al. 1991). Porosity and surface roughness
are independent of wavelength. Thus, constraints were
placed on the solutions such that for a particular hemi-



RHEA AND EUROPA 239

8

t-

O 7
O
r--

8

O3

r

•r- 5.

O
O 4.

"_ 3
°--

u
n 2

c 1

o

.... .,:I:::I'!!,-..,. I 1 I'::

-- Rhea (leading, solution 1) _[
- - Rhea (lending, solution 2) /
...... Rhea (trailing, solution 1) / /o
-.- Rhea (trailing, solution 2) ! /o

--- Europa (leading) //
.... Europa (trailing) , d' /"

,-... o--o new fallen snow i,c // //'-
:. ", a--n surface frost _ ///
"L_.,-...,, I,_,,/,.

,,
,, oL.. 

", o,° /'#'
..,..-.......

20 40 60 80 100 120 140 160 180

phase angle (degrees)

FIG. 11. The single-particle scattering function (Eq. (2)) at 0.47 p,m using the b and c values listed in Table 11. The solid and long-dashed

lines represent Rhea's leading hemisphere (solutions 1 and 2, respectively). The dotted and dash-dot lines represent Rhea's trailing hemisphere

(solution I and 2, respectively). The dashed and dash-dot-dot lines represent Europa's leading and trailing hemispheres, respectively. Also included

are the scattering curves for newly fallen snow in calm (circles) and terrestrial surface frost (triangles) found by Verbiscer and Veverka (1990).

sphere the values of h and 0 are also independent of
wavelength. All solutions with RMS residuals within 1%
of the lowest RMS residual, and for whom values of h

and 0 do not vary with wavelength, are considered viable
solutions to the model. Two viable solutions were found
which met these criteria and are listed in Table II. The
residuals in Table II are defined by

m4''2,, (3)

where mti is the calculated magnitude at phase angle c_i,
and rnai is the observed magnitude at the same phase
angle. Figures 5 through 8 compare data with theoretical
curves.

Opposition Effect

The opposition effect is described by two parameters,

Be and h. The values of Be for Rhea are between 0.42 and
0.52, indicating that the particles on the surface of this
satellite are partially transparent, as expected from water
ice or frost. Using this same model, Verbiscer and Vev-
erka (1989) found a value of 0.656 for Be on Rhea. The
slight differences in the values between their results and
ours are due to the differences in the two data sets at

small phase angles. Similarly, a low value of Be was found
for Europa (0.5) (Domingue et al. 1991). Helfenstein et
al. (1988) found a B o value of 0.65 for Titania and showed

that Titania-like values of both Be and h were also consis-
tent for other of the uranian satellites. However, Um-

briefs value of Be (2.01) was closer to Helfenstein and
Veverka's (1987) value (Be -- 2.49) for the Moon.

The two solutions for Rhea's leading hemisphere phase
curve give values of h between 0.0071 and 0.0122. The

opposition data for the trailing hemisphere have too much
scatter to find unique values ofh and B o. However, leading

hemisphere values of h and Be are consistent with the
trailing hemisphere data that are available, as seen in Figs.
6 and 8. Verbiscer and Veverka (1989) found a value of

h = 0.08 using this same model. Once again, we attribute
the different values between the two studies to differences
in the data sets, especially within the opposition surge.
Both hemispheres of Europa have an h value of 0.0016
(Domingue et al. 1991). Although Rhea's value for h is
higher than Europa's, both values of h are much smaller
than values found for the Moon (h = 0.05, Hapke 1986;

h = 0.07, Helfenstein and Veverka 1987). Helfenstein et
al. (1988) found h values of 0.018 and 0.061 for Titania
and Umbriel. Buratti and Veverka (1984) found h values
of 0.4 for Enceladus and Rhea, and a value of 0.7 for
Mimas. However, the h parameter in the model used by
Buratti and Veverka (1984) does not exactly correspond
to h values in Hapke's 1986 model.

The parameter h is related to porosity and particle size

distribution by

h = - _ In (P) Y, (4)
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(i.e., how well sorted the satellite surfaces are), the poros-
ity for Europa is 95-100%, while for Rhea it is 80-9";%.

By comparison, the Moon's porosity is 35-70%. Europa
has a consistently more porous surface than Rhea, but

both satellites have surface porosities comparable to c ry,
powdered, terrestrial snow (Hobbs 1974). This con_ra-

dicts the results and conclusions of Buratti (1985) and

Verbiscer and Veverka (1989). However, their results and

conclusions were based on the analysis of data sets with

either no data less than 2° solar phase, or Noland et al.'s

(1974) data which has a large degree of scatter. Buratti

et al. (1990) found values for Irvine's compaction parame-
ter for several of the uranian satellites (for details of lhis

compaction parameter see Buratti 1985 and Buratti et al.,

1988). From this they found porosities of - 92% for Ariel,

Titania, and Oberon, and a porosity of-75% for Umbriei.

Using a Y value of 0.25, Helfenstein et al.'s (1988) vabJes
of h give porosities of -83 and -52% for Titania and

Umbriel, respectively. The exact values are a little lower

than those found by Buratti et al. (1990), but the relative

values are consistent between the two studies. Thus, the

porosity of Rhea's optically active surface more closely
resembles that of Titania than Umbriel. For Mimas z.nd

Enceladus, Buratti and Veverka (1984) found porosities

of 20% and 10%. Buratti and Veverka (1984) also fotnd

a porosity of 10% for Rhea; however their analysis ,Jid

not include the opposition data of Lockwood et al. (1980).

FIG. 12. A graph of b versus c adapted from McGuire and Hapke
(1994) showing the scattering properties of irregular particles. Also
shown are the regions of b and c values for Europa's leading (gray box)
and trailing (black box) hemispheres along with Rhea's leading and
trailing (hash-marked box) hemisphere. The numbers correspond to
the following particle types: (I) smooth, clear, spherical, (2) low density
of internal scatterers, (3) irregularly shaped, (4) rough-surfaced dielec-
tric, (5) agglomerates, (6) smooth-surfaced metal, (7) medium density
of internal scatterers, (8) high density of internal scatterers, (9) rough-
surfaced metal.

where P is the porosity and Y is a function dependent
on the particle size distribution. Table IlI, adapted from

Hapke (1986), lists the functions of Y corresponding to

various power-law particle size distributions. The param-

eters r I and r_ are the largest and smallest particle radii,

respectively. Solving this expression for porosity gives a

porosity function dependent on h and an assumed particle

size distribution. Figure 9 shows the porosity functions

for Europa, Rhea, and the Moon using Y = Vr3/ln(rl/rs).
This expression for Y was used since it describes the

typical particle size distribution resulting from comminu-
tion processes and has been shown to characterize the

lunar regolith (Bhattacharya et al. 1975; Hapke 1986).

Regardless of the ratio of the largest to smallest particles

Single-Particle Scattering Function

Figures 10 and 11 display the single-particle scatter ng

functions corresponding to 0.47 and 0.55 _m, resp,ec-

tively, for both solutions to Rhea's phase curve ale,rig
with those of Europa. Both hemispheres of Rhea are mL ch

more strongly forward scattering than either hemisphere

of Europa. Hence, we hypothesize that the particles com-
posing Rhea's surface have fewer internal scatterers titan

do the particles found on the surface of Europa. ]he

origin of these internal scatterers may involve mineral

inclusions, bubbles, or microfractures in the particles.

This interpretation ofb and c is substantiated by labora-

tory experiments involving light scattering from large ir-
regular particles (Zerull 1976, Weiss-Wrana 1983,

McGuire 1992, McGuire and Hapke 1994). These stud es

support each other's findings and present a consistent

body of research for evaluating the physical implications

of b and c derived for planetary surfaces. However, only

McGuire (1992) and McGuire and Hapke (1994) examined

the effects of internal scatterers and expressed the parti_'le
phase functions in the form of a double-lobed Hen-

yey-Greenstein function, although the form of the double-

lobed Henyey-Greenstein function used by McGuire aad

Hapke (1994) varies from that used in this analysis.
McGuire and Hapke (1994) define P(a) by
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(I - c') (I - b2) (1 + C') (I -- b 2)

P(a) = 2(1 + 2b cosa + b2)3/2 l- 2(1 - 2b cosc_ + b2) 3/2"

(5)

The values of c' from Eq. (5) and the values of c from

Eq. (2) are related by

c'=2c-1. (6)

The values of b for both equations are the same.

Figure 12 is a plot ofb versus c adapted from McGuire
and Hapke (1994). Particles with a wide variety of mor-
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phologies lie in a narrow region on this plot running from
high internal scattering at one end to smooth at the other.
Clear, smooth, spherical particles are strongly forward
scattering and have large negative values of b and large
positive values of c. Departures from these properties
tends to increase the values of b and decrease the values

of c. Changing the values of the single scattering albedo
of a particle causes only minor changes in b and c.

As shown in the figure, b and c values for Europa are
consistent with surface particles being rough-surfaced and

having a large amount of internal scatterers. This agrees
with the disk-resolved results of Domingue and Hapke
(1992). The fact that the b and c values for Rhea (and
Europa) do not lie within the region outlined by McGuire
and Hapke (1994) may indicate that the surfaces of these

satellites are composed of a mixture of particle types
rather than a single particle type. In keeping with the
highly forward-scattering nature of its single-particle
phase function, both hemispheres of Rhea have b and c

values which appear to correspond to rough-surfaced,
irregular particles with little or no internal scatterers.

Both Buratti and Veverka (1984) and Verbiscer and
Veverka (1989) used a single-parameter Henyey-
Greenstein function for their single-particle scattering
function and found that the scattering function was back-
scattering. Verbiscer (1991) used a two-term Hen-

yey-Greenstein function in her analysis of Rhea and
found that the single-particle scattering function was also
backscattering. Because of the discrepancy between
those results and ours, we went back and looked specifi-

cally for solutions to Hapke's model that would fit our data
and also give a backscattering particle-scattering function.
We did find some solutions to Hapke's model using l he
double-lobed Henyey-Greenstein function which tad
equivalent back- and forward-scattering lobes in the scat-
tering function, but those solutions had larger RMS resid-
uals. The error bars on b and c reflect the variations found

in the different viable solution sets to Hapke's model as
applied to Rhea's phase curves. We did not find any viable
solutions that had a larger backscattering lobe compared
to the forward-scattering lobe which met the criteria that
h and 0 not vary with wavelength. This is highly unusual.
The surfaces of the icy satellites, to date, have all shoa,n
backscattering particle-scattering functions. Verbiscer et
al. (1990) have shown that in order for an icy surf_ce
to have a backscattering particle-scattering function, Ihe
frost or ice on the surface must be backscattering, unlike
terrestrial frosts or snows. They have also shown that
adding a darker component to provide the backscattering
characteristic to an icy surface requires unrealistic values
of the single scattering albedo. Therefore we interpret our
results to signify a difference in the structure between lhe
frosts on Rhea versus the other icy satellites.

Roughness

Our measured values of 0 for Rhea were between

13° - 3° and 16° - 3°. These values agree (within the
error bars) with the global disk-integrated results (0 =
13° - 5°) of Verbiscer and Veverka (1989). Verification
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of our disk-integrated measured value for 0 was obtained
by a first-order disk-resolved analysis of several Voyager
images. Figures 13 and 14 show examples of equatorial
scans across the photometric equator of clear filter images
taken at 68.14 ° and 26.76 ° phase angle compared to the
theoretical model with the parameter values given in Table

II. Figure 15 is a similar comparison of a scan along the
mirror meridian of the clear filter image taken at 68.14 °

phase angle. Slightly better fits to the meridian scan can
be obtained by increasing the value ofw by -+0.005, which
is within the error bars of our solutions. Changing the
value of 0 does not affect the goodness of fit to the merid-
ian scan. Verbiscer and Veverka (1989) found evidence
for a hemispherical roughness dichotomy in their more
extensive disk-resolved analysis. However, neither Ver-
biscer and Veverka's (I 989) nor our disk-integrated analy-
ses demonstrated this dichotomy. Our values for 0 are

midway between the values found by Helfenstein and
Veverka (1987) for the Moon (0 = 20°) and Domingue et
al. (1991) for Europa (0 = 10°). Our values are closer to
that found for Umbriel (0 = 18 -+ 3°) by Buratti et al.

(1990). With the exception of Triton, for which Hillier et
al. (1991) found a0 value of- 11°, many of the icy satellites
have 0 values similar to the Moon's or higher. Helfenstein

et al. (1988) found values of 0 for the uranian satellites
ranging from 42 ° for Ariel to 19° for Umbriel. Buratti
(1985) found a0 value of 30° for Mimas. Therefore, Rhea's
surface appears to be smoother than the majority of icy
satellite surfaces, with the exceptions of Europa and
Triton.

V. DISCUSSION

Spectroscopic measurements show that both Europa
and Rhea have surfaces composed predominantly (>90%)
of water ice and frost (Pilcher et al. 1972; Fink et al. 1973,
1976; Johnson et al. 1975; Pollack et al. 1978; Clark 1980;
Clark and McCord 1980; McFadden et al. 1980; Clark and
Owensby 1981). This conclusion supports the results of
our photometric analysis, in that both satellites have: (1)
high single-particle scattering albedos, as expected of wa-
ter ice or frost grains, and (2) fairly small Bo values, also
as expected since neither water ice nor frost is opaque at
0.47 or 0.55 _m.

Photogeologic examinations of Voyager images indi-
cate that Europa has a smoother surface than Rhea at
kilometer scales. The 0 values for Rhea are intermediate

between the Moon and Europa. The lower value of 0 for
Europa than for Rhea simply indicates that the greater
smoothness evident at kilometer scales also extends to
millimeter and centimeter scales.

The differences between Europa's and Rhea's single-
particle scattering functions are also of interest. Figures
10 and I I show that, for both hemispheres of Europa,

the single-particle scattering function is predominantly
backscattering with small amounts of forward scattering.
Rhea, on the other hand, is predominantly forward scat-
tering with a backscattering lobe comparable to Europa.
Figure 12 shows what this implies in terms of particle
types. Essentially, particles on both satellites are rough-
surfaced and irregular, but those on Europa have more
internal scatterers.

An examination of Rhea's surface morphology shows
that one of the major regolith-forming processes is impact
gardening. The presence of a leading-trailing hemispheri-
cal albedo dichotomy similar to that seen on the Galilean
satellites also suggests that its surface has been modified
by micrometeoritic gardening, ion sputtering, ion implan-
tation, or a combination of these processes. These pro-
cesses have been suggested as sources for the hemispheric
albedo differences on the Galilean satellites (Lane et al.
1981, Shoemaker and Wolfe 1982, Clark et al. 1983, John-
son et al. 1983, Clark and Lucey 1984), but would not
necessarily produce different physical structures in the

water ice and frost grains on Rhea and Europa. Examina-
tions of terrestrial snow and frost show them to be strongly

forward scattering (Veverka 1973, Verbiscer et al. 1990,
Verbiscer and Veverka 1990), as seen in Figs. 10 and 1 I.
This implies that the scattering behavior of water ice and
frost dominates the single-particle scattering function
measured for Rhea, but that the behavior of Europa's

regolith may be strongly affected by another variable.
Geologic processes responsible for the modification of

Europa's regolith are uncertain, but several have been
suggested. Water volcanism (Squyres et al. 1983), a solid-
state greenhouse (Matson and Brown 1989), micrometeor-
ire gardening (Shoemaker and Wolfe 1982), and ion sput-

tering and implantation (Lane et al. 1981) have all been
considered to have possible roles. The young surface age
and high porosities deduced from the h values support the
gas-driven water volcanism theory, provided the powdery
"pyroclastic" ice composes a part of the resurfacing ma-
terial. The high porosities could also be the result of vapor
deposition from a solid-state greenhouse. Europa's hemi-
spherical albedo dichotomy and spectral properties indi-
cate the presence of other material besides water ice. SO2
detected on the trailing hemisphere is also evidence for
magnetospheric interactions (ion implantation) on
Europa's surface (Lane et al. 1981). Each of these pro-
cesses is capable of producing ice or frost grains with large
numbers of internal scatterers. However, it is unclear that

they would produce a dominantly backscattering ice or
frost grain at these wavelengths. There are a few ideas
which may explain these scattering curves. The differ-
ences between the scattering curves of Europa and Rhea
may signify that whatever other material is present on
Europa dominates the single-particle scattering function
measured from disk-integrated observations. The smaller
values of the single scattering albedo, w, for Europa rela-
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tive to Rhea support this idea. When the results of Verbis-
cer et al.'s (1990) work is considered, this "other" compo-
nent could not be substantially darker than water ice.
Alternatively, the explanation for the differences in the
single-particle scattering function may simply be that the
structure of the frost or ice grains on Rhea are fundamen-
tally different than those seen on other icy satellites. A
final explanation may be that the observations on Europa,
and even Rhea, are inadequate to measure the narrow
forward-scattering lobe of water frost, as evidenced in
Figs. 10 and 11. Another indication either that the data
coverage needs to be expanded or that the frost/ice struc-
tures are different is the similarity in B o values for the
two satellites. The Bo values indicate that the material
on both surfaces are more transparent than opaque, and
perhaps the scattering behavior should also reflect some
of this similarity.

The opposition effect parameter, h, as stated earlier,
is small for both satellites as compared to the lunar value.
The high porosities (>90%) implied by these values is the
strongest indicator that ice and rock, even under outer
solar system conditions, do not behave similarly. Rhea's
high regolith porosity shows that impact-generated ice
regoliths have a different texture than impact-generated
rock regoliths. Chapman and McKinnon (1986) suggested
that such a difference may result from a larger vapor
production during impact into ice than into rock. The

results from this study would support a hypothesis that
the water vapor produced during impact is redeposited
as a porous layer of frost. An alternative explanation for
Rhea's high porosity and hemispherical dichotomy is that
like Europa, there may be water volcanism occurring on
the surface. However, there is no strong geological evi-
dence for this hypothesis.

We conclude that the regoliths of both satellites are
compositionally dominated by water ice and frost; how-
ever, the single-particle scattering function indicates that
the structure of the ice and frosts on these two satellites

may be structurally different. Data out at larger phase
angles are needed to establish just how different is the
scattering behavior of these two icy surfaces. The high
photometrically deduced porosities indicate that frost de-
position is important on both satellite surfaces. However,
the different values of 0 indicate that the macroscopic
texture of these frost deposits is rougher on Rhea than
on Europa. This suggests that frost deposition is important
on icy satellites, regardless of the geologic mechanism
producing the frost.
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TABLE A1--Continued
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02

04

12

02

04

04

05

04

05

Ol

04

05

05

Ol

04

05

05

04

04

04

05

06

04

04

04

05

06

02

02

04

05

06

06

02

02

04

05

06

06

04

04

04

05

06

06

04

04

04

05

06

06

17 78

05 78

15 79

06 79

15 79

08 80

16 80

15 79

08 80

16 80

07 81

09 81

07 81

09 81

26 82

13 82

i0 82

19 82

26 82

13 82

10 82

19 82

05 83

18 83

23 83

16 83

16 83

05 83

18 83

23 83

16 83

16 83

06 84

29 84

05 84

07 84

03 84

21 84

06 84

29 84

05 84

07 84

03 84

21 84

02 85

15 85

24 85

26 85

13 85

22 85

02 85

15 85

24 85

26 85

13 85

22 85

13830.014 5.79 85.6

13848.029 6.08 80.1

13947.794 1.55 114.4

13969.695 3.76 60.8

14223.026 5.98 71.9

14277.941 3.63 128.8

14345.732 3.50 135.4

14223.035 5.98 72.7

14277.941 3.63 128.8

14345.731 3.50 135.3

14701.782 1.32 55.8

14733.699 4.30 81.1

14701.782 1.32 55.8

14733.699 4.30 81.1

14996.044 5.68 90.5

15072.791 0.54 90.3

15099.748 3.22 79.7

15108.702 3.99 73.7

14996.045 5.68 90.6

15072.792 0.54 90.4

15099.749 3.22 79.7

15108.702 3.99 73.7

15429.858 1.77 92.0

15442.821 0.47 45.3

15447.820 0.37 84.1

15470.761 2.56 114.1

15501.705 4.98 61.3

15429.858 1.77 92.0

15442.824 0.47 45.6

15447.821 0.37 84.1

15470.761 2.56 114.1

15501.706 4.98 61.4

15737.013 5.90 85.4

15759.990 5.40 105.8

15795.902 3.00 88.9

15827.795 0.30 113.2

15854.738 3.00 102.0

15872.693 4.50 93.8

15737.014 5.90 85.5

15759.990 5.40 105.8

15795.910 3.00 89.6

15827.806 0.30 114.0

15854.729 3.00 101.3

15872.693 4.50 93.8

16157.944 4.40 127.4

16170.874 3.29 78.1

16179.857 2.31 74.7

16211.773 1.12 100.8

16229.741 3.00 93.9

16238.695 3.80 87.7

16157.944 4.40 127.4

16170.889 3.29 78.3

16179.878 2.31 76.4

16211.788 1.12 102.0

16229.742 3.00 94.0

16238.709 3.80 88.8

0.405

0.423

0.323

0.383

0.426

0.362

0.348

0.301

0.386

0.416

0.256

0.358

0.378

0.341

0.232

0.207

0.344

0.373

0 389

0 402

0 388

0 240

0 353

0 391

0 365

0 368

0 353

0 302

0 352

0 359

0.382

0.328

0.309

0.268

O. 350

0.383

0.221

0.313

0.333

0.300

0.209

0.180

0.311

0.342

0.364

0.355

0.332

0.204

0.327

0.354

0.304

0.350

0.312

0.277

0.320

0.346
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TABLE AII

Rhea Voyager Images: Leading Hemisphere

247

Image

FDS

No. Filter

34821.

34831.

I0

37

49

45

53

34840 24

34846 37

49

45

53

34855 23

.30

34862.43

.55

.51

.59

34869.55

34870.02

34877.22

.30

.38

34950.16

34963.08

.12

.20

.24

43856.54

.57

43857.04

43863.35

.41

.48

43880.41

.47

.54

43888.01

.04

.07

.14

43966.58

43967.06

.10

43977.14

43996.08

Subspacecraft

longitude

a (@) I/F M

clear 15.72 22.04 0.4092 0.7112

clear 18.09 47.37 0.4137 0.7314

orange 18.09 47.86 0.4767 0.6894

blue 18.09 47.70 0.4203 0.7525

green 18.09 48.02 0.4762 0.6965

clear 19.77 68.98 0.4258 0.7190

clear 20.66 84.61 0.4143 0.7568

orange 20.66 85.12 0.4781 0.7163

blue 20.66 84.95 0.4255 0.7651

green 20.66 85.30 0.4836 0.7096

clear 21.23 107.39 0.4225 0.7285

clear 21.23 107.70 0.3840 0.8322

clear 20.66 127.38 0.4211 0.7130

orange 20.66 127.88 0.4906 0.6703

blue 20.66 127.70 0.4355 0.7138

green 20.66 128.07 0.4804 0.6990

clear 19.29 147.88 0.4352 0.6564

clear 19.29 148.22 0.3910 0.7727

clear 16.72 170.25 0.4282 0.6379

blue 16.63 170.67 0.4272 0.6777

green 16.57 171.08 0.4850 0.6317

orange 14.84 6.10 0.6342 0.3204

clear 135.35 206.42 0.0136 4.3160

clear 135.43 206.60 0.0151 4.2044

blue 135.54 206.96 0.0134 4.3726

orange 135.60 207.15 0.0168 4.1967

orange 14.21 71.36 0.5718 0.5373

green 14.21 71.49 0.5491 0.5627
clear 14.20 71.78 0.3999 0.6306

blue 14.94 88.41 0.4867 0.6049

green 14.91 88.67 0.5682 0.5356

clear 14.92 88.97 0.4696 0.6207

blue 14.52 134.60 0.4871 0.5711

green 14.50 134.89 0.5594 0.5277

clear 14.48 135.22 0.4709 0.5847

blue 13.83 155.76 0.4986 0.5187

orange 13.25 155.91 0.5637 0.5136

green 13.26 156.06 0.5501 0.5219

clear 13.21 156.40 0.4577 0.5886

clear 16.42 1.31 0.4417 0.5921

orange 16.50 1.55 0.5289 0.5338

green 16.55 1.67 0.5163 0.5416

clear 26.76 17.93 0.3824 0.7887

clear 68.14 25.66 0.1581 1.7487
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TABLE AIII

Rhea Voyager Images: Trailing Hemisphere

Image Subspacecraft

FDS longitude

No. Filter a (@) I/F M

34884.07

34900.02

34903.12

34907.36

44

.48

52

34914.51

57

34925.32

38

.44

54

34926.02

I0

34963.08

12

20

24

43912.45

.48

.54

.57

43926.23

.27

.31

43937.03

.ii

.15

43950.50

43966.58

43967.06

.10

clear 13.49 191.39 0.3999 0.8805

clear 4.85 242.26 0.4913 0.5766

clear 3.31 252.08 0.4915 0.5723

clear 1.83 265.33 0.5052 0.5413

blue 1.83 265.72 0.5219 0.5434

orange 1.83 265.92 0.5792 0.5089

green 1.83 266.11 0.5907 0.4934

clear 2.15 286.19 0.5132 0.5292

clear 2.15 286.19 0.4722 0.6196

blue 5.54 312.81 0.5333 0.5509

clear 5.54 313.04 0.4688 0.6535

clear 5.54 313.27 0.4640 0.6648

green 5.59 313.65 0.5754 0.5570

orange 5.65 313.96 0.5651 0.5706

clear 5.71 314.26 0.4931 0.6017

clear 135.35 206.42 0.0136 4.5260

clear 135.43 206.60 0.0151 4.4144

blue 135.54 206.96 0.0134 4.5826

orange 135.60 207.15 0.0168 4.4027
blue 6.79 230.34 0.4623 0.6801

clear 6.81 230.49 0.4460 0.6956

orange 6.86 230.78 0.5422 0.6200

green 6.87 230.93 0.5305 0.6252

blue 5.29 269.26 0.4538 0.6809

orange 5.32 269.44 0.5033 0.6868

green 5.29 269.62 0.4949 0.6867

clear 4.71 296.97 0.4617 0.4422

orange 4.65 298.48 0.5326 0.6433

green 4.66 297.46 0.5460 0.5969

clear 6.76 329.05 0.4673 0.6781

clear 16.42 1.31 0.4417 0.8021

orange 16.50 1.55 0.5289 0.7498

green 16.55 1.67 0.5163 0.7476
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